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In view of parameterized nonlinear problems for electromagnetic field computation, when the geometric parameters change, a series 

of field computation need to be repeated, in which a lot of double computation lead to large amount of calculation. This paper 

introduces are reduced basis finite-element method (RBFEM) which is based on reduced basis matrix to solve the finite-element matrix 

equation. Since the RBFEM significantly reduces the dimension of the matrix equation, it accomplishes the entire process with less 

amount of calculation compared to traditional FEM. The RBFEM is employed to solve both small scale and large geometric 

deformations. 

 
Index Terms—Finite-element method, geometric deformation, parameterized nonlinear problem, reduced basis method. 

 

I. INTRODUCTION 

n computational electromagnetics, one fundamental problem 

is to develop methods for the solution on domains which 

contain several objects, and these objects may have complex 

and time-dependent geometry[1]. 

Finite-element method(FEM) is a numerical method based 

on variational principle and polynomial interpolation in the 

Sobolev space[2]. When obtaining discrete solutions to 

continuous problems described by partial differential 

equations (PDE) and boundary and initial conditions with 

FEM, it is necessary to generate a computational mesh to 

define the unknowns [2]. 

In order to improve the performance of electromagnetic 

devices, geometrical size optimization, shape optimization and 

topology optimization are all necessary in design processes. 

Mostly, successful optimal design is dependent on the 

accuracy of the mathematical model. Optimal design using 

finite-element analysis (FEA) has gradually become a regular 

design method for improving the performance of 

electromagnetic (EM) devices, subject to, for example, 

volume, weight and cost constraints. In electromagnetic field 

computation, researchers sometimes have to deal with the 

issue with large geometric deformation, for example, 

movement with long distance. The calculation is complicate 

and it often causes abundant of working load. 

One of the approaches to reduce the computing load is to 

improve the algorithm of FEM. In this paper, a reduced basis 

method (RBM) is presented. The RBM is applied for both 

small scale deformation and large geometric deformation. 

Comparisons between traditional FEM and the reduced basis 

finite element method (RBFEM) for the deformation problems 

are conducted. The results show that the RBFEM is feasible 

and is able to save computing time. 

II. REDUCED BASIS FINITE-ELEMENT METHOD  

The reduced basis method (RBM) [3]is one of  approximate 

analysis methods. Its basic principle is to solve the FEM 

equations after obtaining the initial solution of u, when the 

modification of design parameters occurs, instead of getting 

the solution u* by directly calculation of the FEM equations, 

RBM finds u* through the relationship between u* and u. 

Thereby it can significantly reduce the amount of calculation. 

The differential equation of 2-D magnetic field is 
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In equation (1) A is the component of magnetic vector po-

tential along the z axis. J is the electric current density along 

the z axis. 

After applying the FEM to nonlinear magnetic problem, 

the matrix equation (1) on the entire solution domain is 

Au b                                             (2) 

In (2), A is the initial coefficient matrix, u is the initial 

magnetic potential, supposing that the number of total degrees 

of freedom (DOF) is n. In nonlinear problems, when the 

parameters 
1 2, ,, mp p p  have been varied, the equation (2) 

needs to be calculated repeatedly, and the computing load is 

heavy.  

Based on reduced basis (RB) technology, the magnetic 

vector potential u* can be expressed by using the linear 

combination of linear independent vector u1, u2, ..., um, where 

m is the number of parameters, it is far less than n. 
*u Zv                                          (3) 

where  1 2, ,, mZ z z z  is the RB matrix, and 
T

1 2[ , , , ]mv v v v  is 

an unknown coefficient vector. Substituting (3) into (2), we 

have 
* T * TA Zv b Z A Zv Z b                           (4) 

Equation (4) can be written as 

* *A v b                                           (5) 
* T *A Z A Z  is the n×m order RB coefficient matrix. b* is 

the n×1 order RB right hand item. When v is solved, using the 

equation (3) one can get the next iteration magnetic potential 

vector u*. 

Construction of the RB matrix is an essential step which can 

affect the working load. Traditional RBF requires that the zi 

are linearly independent vectors. Basic technique is to use the 

ui as the zi. However this technique is complicate. In this paper, 

a new strategy for constructing the RB matrix is proposed. 

This paper employs the Taylor series expansion of the 

magnetic vector potential, which is obtained after the 

modification of geometric parameters, in the vicinity of the 
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initial magnetic vector potential. Due to the solution of 

second-order derivative and above is complicated and time-

consuming, here we only take the first-order derivative into 

consideration. 
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To the both sides of equation (2), we do the first order 

partial derivatives to pi. 
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As b is a constant, we have 
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In FEM the region is divided into many units. The total 

coefficient matrix is the superposition of the coefficient matrix 

of each unit. Assuming that the number of elements is ne, the 

equation (6) can also be expressed as 

1

e
en
j e

j

ji i

Au
A u

p p


 

 


                                (9) 

Considering the Taylor series expansion, the RB can be 

chosen as: 
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The calculation process of solving the equation (4) is 

replaced by solving the equation (5)  

III. NUMERICAL EXAMPLES 

The RBM is applied to two types of nonlinear problems 

which involves small scale deformation and large geometric 

deformation.  

A. Small Scale Deformation Problem 

Considering that the variation only occurs in a limited area,  

limited number of elements in A is changed in the iteration. In 

RBFEM, the coefficient matrix A can be divided into two parts, 

stabilized A0 and parameterized Ap. 

0 pA A A 
                                (11) 

The application example is to optimize the geometrical 

sizes of an electromagnetic brake. The geometry and design 

parameters are shown in Fig. 1. There are three geometry 

variables, 10mm<p1<25mm, 23mm<p2<28mm, and 

21mm<p3<26mm.  

The flux lines of the initial model and the model when 

parameters are varied are shown in Fig. 2. The Comparison of 

computing time of one iteration between traditional FEM and 

RDFEM with different number of unknown magnetic 

potentials is shown in Table I. 

 
Fig. 1.The geometry and its parameters. 

                        
(a)                                                           (b)  

Fig. 2. Flux lines before and after variation. (a)Initial flux lines.  (b) Flux lines 

after variation 

TABLE I 
COMPARISON OF COMPUTING TIME OF SOLVING FEM MATRIX EQUATION 

 Computing time (s) 

Method n=6327 n=13027 n=89871 

FEM 23 88 136 

RBFEM 25 76 102 

B. Large Geometric Deformation Problem 

In order to verify that the RBFEM is practicable for 

electromagnetic problems with large geometric deformation, a 

simple electromagnetic field problem as shown in Fig. 3 is 

tested. The parameters are 0mm<p1<100mm, 

0mm<p2<100mm, and 3mm<p3<10mm. The flux lines of the 

initial model and the model when parameters are varied are 

shown in Fig. 4. 

 
Fig. 3.The geometry and its parameters. 

                   
(a) .                                                       (b)   

Fig. 4.Flux lines before and after variation. (a)Initial position. (b) End position. 

 

TABLE II 

COMPARISON OF COMPUTING TIME OF SOLVING FEM MATRIX EQUATION  

 Computing time (s) 

Method n=5413 n=14138 n=86342 

FEM 31 93 172 

RBFEM 29 81 123 

IV. CONCLUSION 

The aim of this study is to apply the RBFEM to nonlinear 

electromagnetic problems which involve geometric 

deformation. The results of the calculation and the comparison 

between FEM and RBFEM show that RBFEM is able to 

accelerate the computing process. 
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